

Greece – China Bilateral Cooperation Ministry of Science and Technology (MOST) of the People's Republic of China & General Secretariat of Research and Technology (GSRT) of the Hellenic Republic

Project SYNAGRON

Integrated management and exploitation of multi-dispersed agricultural residues – application to energy production

Prof. Vagelis G. Papadakis *Project Coordinator* University of Patras, GREECE

Project / Funding

 Greece: Funded under European Regional Development Fund (ERDF) and National Resources (GSRT)

China: Funded under Ministry of Science and Technology of the People's Republic of China

Start: 14/10/2019, **Duration:** 3 years

These are burnt releasing about 2.7 millions of CO₂ greenhouse gas emissions in the atmosphere.

Alternatively, 6.6 TWh of thermal energy could be produced annually <u>or</u> 2.3 TWh of electrical energy covering almost **4.8% of the total country's energy needs.**

Main Objective of SYNAGRON

Pave the way for the environmentally friendly useful exploitation of the residues of the Chinese and Greek agricultural sectors for the generation of high value bioproducts and/or energy.

This is to be accomplished by designing and developing an innovative pyrolysis (Py) - anaerobic digestion (AD) processing plant for the conversion of agricultural wastes initially into useful bio-products, such as bio-char, bio-oil, syngas and biogas, and then into hydrogen and/or electrical energy.

The proposed processing plant for the conversion of both biodegradable and nonbiodegradable agricultural residues into useful bio-products and/or hydrogen feeding SOFCs for energy production

Market Uptake

Start date	M1	End date	M18	Total person months	24
Participant	GR: UP , S CN: BUC	SIRMET, UOWM, T			
Tasks					
T1.1 Survey of the n (<u>UP</u> , SIRMET, U	-	ng agricultural resi)	dues		
T1.2 Market analysi (<u>UP</u> , SIRMET, BI		r, bio-oil, biogas ar	ıd hydrogen		
Deliverables					
D1.1 Report on the r	nost promisii	ng agricultural res	idues in Chin	na & Greece (M18)	
D1.2					

 Biodegradable waste fermentation for biogas production

Start date	M1	End date	M24	Total person months	31						
Participant		UP, SIRMET, UOWM, BUCT, BUPEE, BENRAN									
Tasks											
•	•	tion of the anaer esidues (<u>UP</u> , SIRN	•	process using various PEE, BENRAN)							
	-	nd optimization Iltural residues (<u>I</u>		bic digestion processes ι JCT)	using						
Deliverables											
D2.1 Mid-ter	m project repo	rt (M18) – will al	so include pro	gress from WP2, WP3, V	VP4, below						
D2.2 Report	on the experim	ental investigatio	on of anaerob	ic digestion processes (N	120)						
D2.3 Report of processes (M2)		cal modeling and	l optimization	of the anaerobic digest	ion						
D2.4 Dissemi	nation activiti	a. 2 muhliontiona									

Non-Biodegradable waste catalytic pyrolysis for the production of bio-char, bio-oil and syngas

Start date	M1	End date	M24	Total person months	28						
Participant	GR: UOWM, UP, KUST										
raiticipant	CN: BUCT	, BUPEE, BENRAN									
Tasks											
T2 1 Experime	ntal investiga	tion of the catalyt	ic pyrolysis r	process using various non-							
-	-	esidues (<u>UOWM</u> , F									
T3.2 Theoretic	cal modeling a	nd optimization o	f the catalvt	ic pyrolysis processes usin	ng variou						
	-	ral residues (<u>UOW</u>	-		0.000						
Deliverables											
	on the experim	ental investigatio	n of the cata	lytic pyrolysis process (M 2	20)						
D3.1 Report of	•	-	-		·						
D3.1 Report of	•	-	-	llytic pyrolysis process (M2 n of the catalytic pyrolysis	•						
D3.1 Report of D3.2 Report of (M24)	on the theoret	cal modeling and	optimizatior		processe						

 Biogas and bio-oil utilization for hydrogen production

Star	rt date	M6	End date M30 Total person months										
Part	icipant GR: UOWM, UP, KUST												
Tasks	5												
	-	-	ation through cata ion to hydrogen p	• •	nent and evaluation for t <u>WM</u> , KUST)	he biogas							
		al modeling <u>)WM</u> , UP)	and optimization	of the catalyti	c reforming processes fo	r hydroger							
Deliv	verables												
D4.1	Report o	n catalyst pi	reparation (synthe	sis protocols)	and characterization res	ults (M20)							
D4.2	Report o	n catalytic p	erformance evalu	ation (M28)									
 D4.2 Report on catalytic performance evaluation (M28) D4.3 Report on the theoretical modeling and optimization of the catalytic reforming processes (M30) 													
(10150	/					.g p. 000000							

Techno – Economical Study & Optimization & Environmental Assessment

Sta	irt date	M18	End date	M36	Total person months	26	
Par	ticipant	GR: S	irmet, Up, U	OWM			
га	сперане	CN: B	UCT				
Tasks							
T5.1	Theoretical r	modeling	and optimiza	ation of the	e overall plant perfe	ormance using	various non-
biode	gradable agr	ricultural	residues (UP	, <u>UOWM</u>)			
		-	•		e overall plant perf	ormance for ge	eneration of
electr	icity in Solid	Oxide Fu	el Cells (<u>UP</u> , I	UOWM)			
T5.3	Techno – Ecc	onomical	Study (<u>SIRM</u>	<u>ET</u> , UP, BUC	T)		
T5.4	Environment	tal Assess	ment (<u>UP</u> , TE	EIWM, BUC	Т)		
T5.5	Feasibility /	demo pro	ject (<u>SIRMET</u>	, UP, BUCT,	BUPEE, BENRAN)		
Delive	erables						
D5.1	Report on th	he theore	tical model f	or the proc	essing plant and So	OFC integrated	l unit (M33)
D5.2	Report on th	he techno	economic s	tudy (M33)			
D5.3	Environmen	ntal asses.	sment (M33))			
D5.4	Feasibility /	′ demo pr	oject (M36)				
	Disseminati rences (M36		ties: 2 public	ations in In	ternational journal	s, 2 participati	ions in Int.
D5.6	Final projec	t report (M36)				

Timetable	<u>14/1(</u>)/2(<u>)19</u>			-	Tod	ay			_	14/4	<u>4/2(</u> 	<u>)21</u>							<u>1</u> 4	4/10	/ <u>2022</u>
	Months	0	2	4	e	5	8	10	12	2 1	4 :	16	+ 18	20	22	24	26	28	30	3	2	34	↓ 36
WP1 Market Uptake																							
WP2 Biodegradable waste fe biogas production	ermentation for																						
WP3 Non-Biodegradable wa pyrolysis for the production of oil and syngas	•																						
WP4 Biogas and bio-oil utiliz hydrogen production	ation for																						
WP5 Techno-economical. stu Optimization & Environmenta	-																						
Management and Dissemina	tion Activities																						
												D	01.2	D2.2 D3.1 D4.1		D2.3 D2.4 D3.2		D4.	2 D4 D4		D5 D5 D5	.2	D5.4 D5.5 D5.6

D3.3

5.3

SYNAGRON Communication & Dissemination

Dissemination to the scientific community

Greek Partners:

- Eight (8) publications in peer reviewed international journals.
- Participate in at least eight (8) international conferences or workshops of high repute (EUROPACAT, WHEC, etc.)

Chinese Partners aim to achieve similar results.

Common Publications - at least 50% of project's publications will involve members of both Consortia (i.e., at least 4 common publications).

Possibility of launching a common patent application

Dissemination to the wider public:

- ► Websites will include forums where the partners together with participating members and interested parties (farmers, companies, private and public bodies) will interact, exchanging information, knowledge and opinions → UP
- ► Quarterly electronic newsletters presenting actions of the specific quarter and those to be implemented in the next three months → <u>UOWM</u>
- Stakeholder groups will be identified in each participating country within the first six months of the project's start → UP, UOWM, SIRMET
- Information days, at the beginning and end of project will be organized in China and Greece. The strong cooperation links with national and regional actors and authorities as well as commercial and industrial enterprises will be exploited. Strong emphasis will be placed on inviting/attracting agricultural cooperations → UP, UOWM, SIRMET

Thank you

For more information

Prof. Vagelis G. Papadakis

Department of Environmental Engineering School of Engineering, UNIVERSITY OF PATRAS Seferi 2, GR-30100, Agrinio, GREECE e-mail: vgpapadakis@upatras.gr