Project Title	Integrated management and exploitation of multi-dispersed agricultural residues – application to		
•	energy production		
Acronym	SYNAGRON	Project Coordinator	Prof. Vagelis G. Papadakis
Organization	Khalifa University of Science and Technology (KUST), Department of Mechanical Engineering (United		
	Arab Emirates), Associate Professor KYRIAKI POLYCHRONOPOULOU		

The newly-established <u>Khalifa University of Science and Technology</u> (KUST) combines The Masdar Institute of Science and Technology, Khalifa University of Science, Technology and Research and The Petroleum Institute into one **world-class**, **research-intensive institution**. It endeavors to be a leader among research intensive

universities of the 21st century, while catalyzing the growth of Abu Dhabi and the UAE's rapidly developing knowledge economy. **KUST** has consistently ranked among the **best 100 universities in Asia**, while according to the Times Higher Education Asia University Rankings it has jumped 44 places and **reached 32nd position in 2018**. KUST boasts **12 dedicated research centers** exploring a diverse range of energy, water, aerospace, **catalysis** and information and communication technology challenges, over **50 central laboratories** with state-of-the-art equipment investigating subjects ranging from artificial intelligence and robotics to **clean energy**, hydrocarbons and aerospace and **3 major demonstration facilities** for solar energy, sustainable buildings and **bioenergy**. <u>KUST participates in the project proposed herein through the Department of Mechanical Engineering and its Assoc. Prof. Kyriaki Polychronopoulou</u>.

Dr Kyriaki Polychronopoulou is currently Assoc. Prof. of Mechanical Engineering at Khalifa University of Science and Technology (KUST) in the United Arab Emirates (UAE), and Visiting Professor at ETH-Zurich. She holds a PhD in Chemistry from the University of Cyprus (2005). During her professorship she received the Advanced Award for Research Excellence from the Abu Dhabi Educational Council (ADEC) in two consecutive rounds (2015 and 2017). Before her appointment at KUST, she was Postdoctoral Fellow at Northwestern University. She is a recipient of a 2007 Fulbright Award for Advanced Research and a 2008 British Council Award in the context of which she worked at the University of Illinois at Urbana-Champaign (IL, USA) and National Physical Laboratory (London, UK), respectively. Her research is focused on the development of catalytic materials for phenol steam reforming, water gas shift and CO oxidation reactions as well as in the application of porous materials for H₂ storage, CO₂ capture and gases separations. She has extensive experience in microstructural characterization of surfaces using diffraction, microscopy and spectroscopy tools. Dr K. Polychronopoulou has authored more than 80 peer-reviewed scientific articles, has over 1400 citations and an h-index of 23. In addition, she has contributed in over 100 international conferences. Since 2016, Dr. K. Polychronopoulou enjoys an ever closer collaboration with Prof. Maria A. Goula from TEIWM (as evidenced by their common publications), but also with the Coordinator of the project proposed herein, V.G. Papadakis. In particular, K. Polychronopoulou is a member of the tripartite advisory committee for a Ph.D. candidate that is supervised by Prof. V.G. Papadakis (the third member is Prof. M.A. Goula).

INDICATIVE R&D PROJECTS:

01/2018 - 12/2019	Project title: "Novel Design Strategies of Bimetallic Nano-catalysts for Enhanced Dry Reforming of
	Methane (DRM) Performance towards Synthesis Gas Production", Funded by: ADEC 2017, Value
	(€): 65.000, Position: Principal Investigator (PI).
01/2015 - 12/2017	Project title: "A CO-free H ₂ fuel by Coupling WGS and CO Oxidation Reactions in a Single Reactor
	Towards Enhancing Fuel Cell Technology (Process Intensification)", Funded by: ADEC 2015,
	Value (€): 90.000, Position: PI.
01/2015 - 12/2016	Project title: "Catalytic Conversion of Carbon Dioxide into Methanol Using Advanced NanoPorous
	Covalent Organic Polymers", Funded by: KAIST-KU Award 1015 & 2016, Value (€): 160.000,
	Position: PI.

DESCRIPTION OF KUST EQUIPMENT TO BE USED IN THE PROJECT PROPOSED HEREIN:

A 3Flex Surface Area and Pore Size Analyser system (Micromeritics, USA) will be used to measure **the surface area and porosity** (BET surface area, m^2/g) and **pores size distribution** (BJH plots) of the materials. An Autochem 2920 (Micromeritics, USA) will be used for the **Temperature-Programmed Reduction** (TPR) and **Desorption** (TPD) techniques (TPR-H₂, TPD-NH₃, TPD-CO₂ etc.). Moreover, in-situ diffuse reflectance infrared transform spectroscopy (in situ DRIFTs) analysis will be applied in order to study the *chemical structure and thermal stability of adsorbed surface carbonates*. A Perkin-Elmer Spectrum GX II FTIR spectrometer equipped with a HT/HP controllable DRIFTS cell (Harrick, Praying Mantis) will be used for performing in **situ DRIFTS-CO₂ chemisorption studies**.

SELECTED LIST OF PUBLICATIONS IN PEER REVIEWED INTERNATIONAL JOURNALS:

- Charisiou N.D., Siakavelas G., Tzounis L., Sebastian V., Monzon A., Baker M.A., Hinder S.J., <u>Polychronopoulou K.</u>, Yentekakis I.V., Goula M.A., "Insights into the carbon formation during dry reforming of biogas over CeO₂ and La₂O₃modified Ni/ZrO₂ catalysts". *Chem Eng J* – under review.
- Charisiou N.D., Siakavelas G., Papageridis K.N., Sebastian V., Hinder S.J., Baker M.A, <u>Polychronopoulou K.</u>, Goula M.A., "The influence of SiO₂ doping on the Ni/ZrO₂ supported catalyst for hydrogen production through the glycerol steam reforming reaction". *Catal Today* under revision.
- Charisiou N.D., Tzounis L., Sebastian V., Baker M.A., Hinder S.J., <u>Polychronopoulou K.</u>, Goula M.A., "Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al₂O₃ and Ni/La₂O₃-Al₂O₃ catalysts during the biogas reforming reaction". *Appl Surf Sci* under revision.
- 1. Charisiou N.D., Iordanidis A., <u>Polychronopoulou K.</u>, Yentekakis I.V., Goula M.A., "Studying the stability of Ni supported on modified with CeO₂ alumina catalysts for the biogas dry reforming reaction". *Mater Today: Proc* Accepted for publication.
- Charisiou N.D., Papageridis K.N., Tzounis L., Sebastian V., Baker M.A., Hinder S.J., AlKetbi M., <u>Polychronopoulou K.</u>, Goula M.A., "Ni supported on CaO-MgO-Al₂O₃ as a highly selective and stable catalyst for H₂ production via the glycerol steam reforming reaction". *Int J Hydrogen Energ* – In press [link]
- 3. Charisiou N.D., Siakavelas G., Papageridis K.N., Baklavaridis A., Tzounis L., Goula G., Yentekakis I.V., **Polychronopoulou K.**, Goula M.A., "The effect of WO₃ modification of ZrO₂ support on the Ni-catalyzed dry reforming of biogas reaction for syngas production". *Front Environ Sci*, 5 (2017) (article 66). [link]
- Charisiou N.D., Papageridis K.N., Siakavelas G., Tzounis L., Kousi K., Baker M.A., Hinder S.J., Sebastian V., <u>Polychronopoulou K.</u>, Goula M.A., "Glycerol steam reforming for hydrogen production over nickel supported on alumina, zirconia and silica catalysts". *Topic Catal*, 60 (2017) 1226-1250. [link]
- 5. Charisiou N.D., Siakavelas G., Papageridis K.N., Baklavaridis A., Tzounis L., <u>Polychronopoulou K.</u>, Goula M.A., "Hydrogen production via the glycerol steam reforming reaction over nickel supported on alumina and lanthana-alumina catalysts". *Int J Hydrogen Energ*, 42 (2017) 13039-13060. [link]
- 6. Jaoude M.A., <u>Polychronopoulou K.</u>, Hinder S.J., Katsiotis M.S., Baker M.A., Greish Y.E., Alhassan S.M., "Synthesis and properties of 1D Sm-doped CeO₂ composite nanofibers fabricated using a coupled electrospinning and sol-gel methodology". *Ceramics Int*, 42 (**2016**) 10734-10744. [link]

Selected Publications in Peer Reviewed International Conference Proceedings:

- Charisiou N.D., Siakavelas G., Papageridis K., Stavrou S., Latsiou A., Sebastian V., Hinder S.J., Baker M.A., <u>Polychronopoulou K.</u>, Goula M.A., "Investigating the correlation between deactivation and carbon deposition on Ni/Al₂O₃ and Ni/CaO-MgO-Al₂O₃ catalysts during the biogas reforming reaction". <u>ANM2018</u>, Aveiro, Portugal, July 18-20, 2018.
- Charisiou N.D., Siakavelas G., Papageridis K., Sebastian V., Hinder S.J., Baker M.A., Polychronopoulou K., Goula M.A., "Hydrogen production through the glycerol steam reforming reaction: The influence of Y₂O₃ doping on Ni/ZrO₂ catalysts". ANM2018, Aveiro, Portugal, July 18-20, 2018.
- Charisiou N.D., Papageridis K.N., Sebastian V., Hinder S.J., Baker M.A., AlKhoori A., AlKetbi M., <u>Polychronopoulou</u> <u>K.</u>, Goula M.A., "Copper catalysts supported on ceria-samaria for the production of hydrogen via the glycerol steam reforming reaction". <u>PREPA12</u>, Louvain-La-Neuve, Belgium, July 8-12, 2018.
- 4. Charisiou N.D., Papageridis K.N., Siakavelas G., Domopoulou A., Sebastian V., Hinder S.J., Baker M.A., <u>Polychronopoulou K.</u>, Goula M.A., "Synthesis of Ni/Al₂O₃ by poly(ethylene glycol) assisted sol-gel route as a highly efficient catalyst for the biogas reforming reaction". <u>PREPA12</u>, Louvain-La-Neuve, Belgium, July 8-12, **2018**.
- Charisiou N.D., Siakavelas G., Papageridis K.N., Sebastian V., Hinder S.J., Baker M.A., Polychronopoulou K., Goula M.A., "Hydrogen production via the steam reforming of glycerol using Ni supported on zirconia modified with Y₂O₃ catalysts". WHEC2018, Rio de Janeiro, Brazil, June 17-22, 2018.
- Charisiou N.D., Siakavelas G., Papageridis K.N., Sebastian V., Hinder S.J., Baker M.A., Polychronopoulou K., Goula M.A., "Highly active and coke resistant Ni catalyst supported on CaO-MgO-Al₂O₃ for H₂ production via the biogas dry reforming reaction". WHEC2018, Rio de Janeiro, Brazil, June 17-22, 2018.
- Charisiou N.D., Papageridis K.N., Siakavelas G., Latsiou A., Sebastian V., <u>Polychronopoulou K.</u>, Goula M.A., "Hydrogen production via the glycerol steam reforming using nickel catalysts based on zirconia and zirconia modified with CeO₂ or La₂O₃". <u>EHEC2018</u>, Malaga, Spain, March 14-16, **2018**.
- Charisiou N.D., Siakavelas G., Papageridis K.N., Tzounis L., Sebastian V., Baker M.A., Hinder S.J., <u>Polychronopoulou</u> <u>K.</u>, Goula M.A., "Nickel on alumina, zirconia and silica catalysts for the production of hydrogen via the biogas dry reforming reaction: Insights into carbon formation". <u>EHEC2018</u>, Malaga, Spain, March 14-16, 2018.
- 9. <u>Polychronopoulou K.</u>, Charisiou N.D., Goula M.A., "Hydrogen production via the glycerol steam reforming reaction using nickel supported on alumina catalysts: The effect of the addition of basic modifiers", <u>IWAM2018</u>, U.A.E., February 18-20, 2018.